
Coupled Borrows

Modelling Rust’s Aliasing Information with Capabilities

by

Markus de Medeiros

Co-supervisor: Alexander Summers (UBC)

Co-supervisor: Aurel B́ılý (ETH Zurich)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE

in

The Faculty of Science

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2024

© Markus de Medeiros 2023

Abstract

Prusti is a Rust verification tool which automatically infers a proof of mem-
ory safety from the Rust compiler internals. Prusti’s core inference was
originally described in terms of a data structure called the Place Capabil-
ity Summary (or PCS) which describes the capabilities the Rust program
has to memory at each program point. The PCS is not implemented in
the current version of Prusti; this thesis explores a method for inferring the
PCS as a separate step from the rest of Prusti. In doing so, we define a
new data structure we call the Coupling Graph, which establishes approxi-
mate aliasing relationships between places in a form that is straightforward
to derive from the compiler. Our approach enables a PCS to be derived
for programs involving reborrowing inside complex dataflow such as loops,
which the release version of Prusti does not currently support.

ii

Lay Summary

Rust is a programming language which checks strong safety properties about
programs before they are run. Prusti is a tool which can verify much stronger
properties of Rust programs by building off of the facts that Rust already
has checked (called a core proof). Our work rethinks how Prusti infers core
proofs, with the ultimate goal of robustly supporting more features from
Rust in the tool.

iii

Table of Contents

Abstract . ii

Lay Summary . iii

Table of Contents . iv

Acknowledgements . v

1 Overview . 1
1.1 Background . 3

1.1.1 Compiler Architecture 3
1.1.2 Owned data . 3
1.1.3 The Polonius Borrow Checker 4

2 Owned Places . 8
2.1 Places and Capabilities . 8
2.2 The Free PCS . 10

2.2.1 The Free PCS Operations 11
2.2.2 Defining The Free PCS 13
2.2.3 Optimization: removing mutability 14

3 Coupled Borrows . 15
3.1 Borrow Coupling . 15
3.2 The Coupling Graph . 16

3.2.1 Calculating the Coupling Graph 17
3.2.2 Free PCS semantics for the Coupling Graph 20

4 Evaluation . 30
4.1 Feature: Magic Wand Inference 30

5 Future Work . 33

Bibliography . 34

iv

Acknowledgements

My deepest thanks to my co-advisors Alex Summers and Aurel B́ılý for their
guidance at every stage in this project. I would also like to thank Jonáš Fi-
ala, Federico Poli, and the rest of the Prusti team for their expertise and
patience as I was learning about Prusti. Finally, I want to thank the rest
of the wonderful people in the Software Practices Lab for the supportive
environment and exciting conversations.

v

Chapter 1

Overview

Rust is a safety-oriented systems language whose strong type system en-
sures the absence of many common kinds of memory errors. Prusti[1][2] is
a deductive verifier for Rust which exploits Rust’s type system in order to
automate proofs over Rust code with little annotation overhead. Prusti is
written as a compiler plugin, and obtains its facts from directly from inter-
mediate passes (notably the Middle Intermediate Representation, or MIR)
in Rust’s compilation pipeline.

Rust is also a rapidly developing language whose compiler is largely
underspecified. This poses a challenge for verification efforts; in the four
years since Prusti was released it has accumulated several refactoring passes
and patches to remain in sync with major changes to the compiler’s inter-
nal architecture. This poses several challenges for maintaining and growing
Prusti. Patches which break abstraction boundaries end up leaking high-
level information deep into Prusti’s pipeline, making the codebase brittle.
Core algorithms (for example, the pack/unpack algorithm) become increas-
ingly difficult for new contributors to understand and maintainers to debug.
The implementation of new Rust features can be slowed by having to retool
the major parts of the Prusti pipeline all at once.

Fortunately, Prusti was originally designed around a simple interface
called the Place Capability Summary (PCS) which describes how a Rust
program is permitted to interact with memory locations at each program
point. The PCS expresses Rust’s ownership as a separating conjunction
of so-called accessibility predicates in a fractional linear logic that can be
encoded into the Viper verification language. Accessibility predicates are a
logical Viper primitive that describe the capability we have a to a place; mu-
table, writable, non-aliasing places are given the exclusive capability whereas
immutable, read-only, possibly-aliasing places are given the shared capabil-
ity. The original design for Prusti builds on a core proof of memory safety,
which amounts to a translation of the Rust program into Viper such that the
set of accessibility predicates entailed by the proof at each program point is

1

Chapter 1. Overview

equal to the PCS at that point.

Currently, Prusti encodes the Rust program into Viper, leaving the PCS
entirely implicit. The decision to deviate from the original design was made
in a time when extracting the relevant information from the compiler was
both a technical challenge and a low priority, however as both Prusti and
the compiler have evolved the advantages of explicitly calculating a PCS are
becoming clear. From a logical perspective, a mechanical derivation of the
PCS gives a soundness criterion that the lower level passes can check them-
selves against. From a software engineering perspective, an explicit PCS
calculation can serve as a reusable interface to the safety guarantees of the
Rust compiler, separating concerns between reading compiler information
and transforming those guarantees into a Viper proof.

In this thesis we present a model of the PCS which encapsulates the
relevant parts of Rust’s program state for Prusti. To demonstrate its ef-
fectiveness, we will then apply this model to Rust programs that involve
reborrowing inside loops, a feature which the release version of Prusti cur-
rently does not support. Our approach explicates the connection between
the compiler’s information and our PCS by following this general strategy:

1. Understand the information Prusti needs to verify a core proof.

2. Link that precise information to an approximate version which is di-
rectly observable in the compiler.

3. Develop algorithms to fill the precise details back in.

We have attempted to design the PCS to be robust against some of
the expected changes to the compiler in the near future. Several teams are
actively working on formalizing the semantics of the MIR,1 (the interme-
diate stage in the Rust compiler where Prusti’s translation begins) so we
will not focus on that aspect of the project. We will also not attempt to
accommodate unsafe code, though we are interested in exploring this as an
application of our model in the future.

Our model is deeply linked to Polonius[4] which we treat as the canonical
source of truth for the state of the borrow checker (in contrast to tools
such as Aeneas[3] which reimplement borrow checking in their model). As

1This includes our own MicroMIR, a fine-grained sequentialization of MIR statements
we have been developing since the summer of 2022.

2

1.1. Background

Polonius is under active development, we have made an effort to minimize
our dependencies on the unstable aspects of that project. Furthermore, we
have attempted to avoid leaking Prusti-specific encoding details into the
model; we hope that our model can be generally useful to other projects
that read and reuse capability-like information from the compiler.

1.1 Background

In this section we will provide a high-level summary of our observations
about the parts of the compiler which pertain to memory safety, and intro-
duce the terminology that we will use for the remainder of the thesis.

1.1.1 Compiler Architecture

The Rust compiler[6] uses multiple passes to lower Rust source code into its
target language, LLVM IR. Of importance to Prusti are the HIR and MIR
(High- and Mid-level Intermediate Representation) intermediate languages.
Both Prusti’s translation into Viper and Polonius’s borrow-checking oper-
ate on the MIR before optimization passes are applied. Prusti also uses the
HIR to encode its functional specifications lower down in its pipeline, so it
is important that we maintain a connection the compiler by reusing its data
structures and terminology where we can.

The MIR is organized into a control-flow graph of basic blocks, each of
which consists of a sequence of statements that ends with exactly one ter-
minator (some passes in the compiler relax this requirement). Each state-
ment and terminator is uniquely identified by a location. Up to date in-
formation about the individual MIR statements can be found in the MIR
documentation[7].

1.1.2 Owned data

The basic unit of memory at the MIR level is a place, which consists of a local
and a sequence of projections. Locals which are allocated during the exe-
cution a MIR program have their live regions demarcated by StorageLive

and StorageDead statements; any other locals are presumed to be live across
the entire program. It is assumed that distinct locals do not alias; however,
their projections (namely deref) might.

3

1.1. Background

A subset of the places which appear syntactically in the program are
assigned unique identifiers called MovePaths. As an optimization, the com-
piler only calculates liveness for places with MovePaths; this is an issue for
us since the PCS must convey accessibility to places which do not occur
in MIR source.2 While we could obtain the compiler’s canonical liveness
calculation by rewriting the Rust source program to include no-ops which
reference the places that we might need to know the liveness for, we instead
choose the zero-cost solution by generalizing and redoing Rust’s liveness cal-
culations ourselves.

Like moves in Rust source programs, moves at the MIR level are as-
sumed to deinitialize their moved-from places, as compared to copies which
do not. The compiler performs standard fixed point analyses on the set of
MovePaths to determine the ranges where they are inhabited by live val-
ues. Some MovePaths structures will require additional pieces of low-level
code called drop shims to be inserted at drops where the compiler cannot
statically deduce if a struct is fully initialized (specifically, if a MovePath
is both MaybeInitialized and MaybeUninitialized). A consequence of Prusti
and Polonius operating on the unoptimized MIR is they cannot access a
version of the program which fully elaborates how variables are dropped,3

meaning we will have to make some simplifying assumptions about drops in
Chapter 2. For more precise information about how the fixed point analyses
are calculated, please refer to the rustc mir dataflow crate in the compiler
or sections 40 through 50 in the compiler development guide[6].

1.1.3 The Polonius Borrow Checker

Polonius[4] is an experimental borrow checker which aims to replace the
existing borrow checking code in the compiler. Polonius is implemented in
Datalog; this is both fortunate and unfortunate for us. On one hand, we
can reason about our model using the simple logical rules outlined as Horn
clauses in Polonius’ implementation. On the other, it means much of the
complexity of borrow checking is pushed into the compiler’s generation of

2A common example would be when a Prusti user asserts that an unused field in a
struct is unchanged by the body of a loop. Because the struct field is unused the compiler
will not generate a MovePath for it, even though the fact that the field is not changed (or
even dropped) during the loop body may be crucial to a successful Viper proof.

3The Polonius team is considering lowering their analysis for their next major revision,
so this may change in the future.

4

1.1. Background

Polonius input facts which is both hard to understand and highly unstable.
In this section, we will provide a brief overview of the parts of Polonius
which are relevant to our model. We will not precisely classify how these
facts are generated from the MIR.

The relevant atoms used by the Polonius analysis are

• Loans: unique identifiers for every borrow syntactically created by
the program (that is, every MIR statement of the form x = &y or x

= &mut y has an associated loan). At these program points, we say a
loan is issued.

• Origins: Analogues of lifetimes from Rust’s surface language[5] which
are fully elaborated by the compiler.

• Locations: A Start location and Mid location for each MIR state-
ment and terminator, corresponding respectively to the point before
and after a statement takes effect.

Every borrow-typed place in a MIR program is generated a unique ori-
gin. Every time a loan is issued, the compiler generates an issuing origin
which lives only as long as the right-hand side of that assignment. Fresh
origins are also provided for user type annotations and function arguments,
but this version of our analysis does not support these features yet.

Loans are invalidated when their borrowed-from places are used in a way
that is only legal if the loan is no longer live (written to, or read from in
the case of mutable borrows). All invalidations of a loan are encoded in
the loan invalidated at fact. Using a fixed-point analysis over the MIR
control-flow graph Polonius seeks to prove that every borrow’s lifetime is
definitely over before it is possibly invalidated, in which case the program
is said to borrow check.4 As a first step, Polonius calculates a set of points
in the control-flow graph for each borrow-typed values where that value is
live, in the sense that it is both initialized and possibly used in the future.5

At runtime every initialized, borrow-typed place will alias some loan. To
determine if a program borrow checks, Polonius must calculate the possible
loans any given origin may alias at each program point, and then finally

4It also seeks to prove that declared relationships between lifetimes at function bound-
aries are respected, but our model does not use this fact yet.

5Currently, Polonius recomputes this itself, even through the data is accessible through
the compiler.

5

1.1. Background

check that none of them are invalidated.

Thus, determining how loans flow between origins is the main content
of the Polonius analysis. The main dataflow facts in Polonius are the
subset base and loan killed at facts, which are generated as Polonius
inputs by the compiler. An origin is a subset of another origin at a point
when all loans in the subset must also be contained in the superset at that
point. Dataflow between origins induces subsets; for example, the origin of
an assigned-from place is a subset of the origin of the corresponding assigned-
to place. Origins are explicitly not considered subsets at a point if the sets
of loans they may alias are subsets by coincidence: at every program point,
Polonius calculates an intermediate subset fact which represents the tran-
sitive closure of all declared subset relationships between live origins which
serves to characterize the origins which must be subsets of each other at that
point.6 For each origin and at each program point, the set of loans an ori-
gin my alias is updated and encoded in the origin contains loan at fact.
Polonius uses the subset fact to update the origin contains loan at fact
by propagating all the loans from subset origins into their superset origin at
every point.

Finally, there is a subtlety regarding reassignments of reborrows which
will be important for our analysis later: When a borrowed-from place is
reassigned, invalidations of that place become permissible again. Polonius
models this by removing that loan from all live origins as regulated by the
loan killed at input fact.7 The archetypal example of this behaviour hap-
pens when a user reassigns a reborrowed-from place, which we present an
example of in Program 1.1.

Polonius is necessarily an approximation of the real aliasing relationships
in a program. Mirroring the approximations of owned data, Polonius takes
a set union at each join point to determine the set of loans an origin possibly
aliases. Note the similarities between the approximations performed for the
Polonius analysis and those for owned data: borrow checking is no more
fine-grained (or value dependent, for that matter) than the initialization

6Calculating this subset fact causes a known issue in Polonius: the borrow checker is
supposed to differentiate between immediate subsets that flow one set of loans into another
at a point, and persistent subsets which establish a subtype relationship between origins
for their entire duration. Currently all subsets are interpreted as persistent in Polonius.

7More precisely Polonius does not remove loans from origins, it just flags them and
does not propagate them to the next program point.

6

1.1. Background

Program 1.1 An example of killing a borrow. At the conclusion of this
program, y is still a borrow of the data 5, but it no longer reborrows through
a and thus invalidations of the borrow on line 2 are permitted.

1 let mut a = &mut (5 : u32);

2 let mut y = &mut (*a);

3 a = &mut (6 : u32);

checking described in Section 1.1.2. This correspondence will simplify how
owned places (Chapter 2) and borrows (Chapter 3) interact in our model.

Finally, we make the following simplifying assumption about the fact
generation in the compiler:

Definition 1.1.1 (Origin Characterization). Each Polonius origin can be
characterized as either a borrow temporary, associated to the right-hand
side of an issue of a borrow, or an origin for a place. We will use lhs(o) to
represent the place or borrow that an origin o represents.

This is not strictly true of all origins generated from Rust code. For one,
a program can have universal origins and corresponding universal subsets
that encode the relationships between borrow-typed function arguments.
Furthermore, user-supplied type information (which occurs at type ascrip-
tions, function invocation, and the aggregation of structs that contain bor-
rows) can introduce additional origins that our model does not currently
handle. We will restrict ourselves from using these features for now, and
halt our analysis if we encounter an origin or subset base fact which we
cannot characterize according to Definition 1.1.1.

7

Chapter 2

Owned Places

As in the original design of Prusti[1] we seek to represent the ownership
state at each program point as a set of resources called the Place Capabil-
ity Summary (abbreviated PCS). To accomplish this we will define a new
data structure called the Free PCS, which should be thought of as an ap-
proximation of the PCS that is straightforward to read off from the compiler.

A trace of the PCS across the execution of a MIR program is a con-
stituent of the core proof for that program which the rest of the Prusti
annotations will build on top of. The PCS can be viewed as a soundness
test for programs which impose their own operational semantics on the MIR;
for Prusti this means we should be able to assert the PCS at each program
point in our translated Viper program. Importantly, this is a set of respon-
sibilities that the compiler-provided information from Section 1.1.2 is not
able to fulfill on its own: Rust does not track whether a user can access
places that they do not reference in the source program (only those which
have MovePaths), and the compiler’s analyses do not distinguish between
capability for a struct and capability for all of its fields. We must recon-
struct this information to fully explain the program’s execution in terms of
permissions, and consequently, to enable Viper to automatically verify core
proofs.

2.1 Places and Capabilities

Recall the definition of a Place from Prusti[1]:

p ::= x | p.f | (∗p)

In the compiler MIR places are represented by a list of ProjectionElems
from a base local, of which the Prusti model only supports Deref and Field.
In our model, we will extend the notion of a place with support for the
Downcast projection, though there are other projections which relate to

8

2.1. Places and Capabilities

features we do not support yet.

p ::= x | p.f | (∗p) | p as τ (2.1)

This extension serves two purposes. For one, downcasts are common in real
Rust code, including some of the programs we will seek to calculate a PCS
for later in this thesis. Another reason is to eliminate the slightly misleading
idea that a place always has a unique unpacking at the MIR level: unlike
product types such as structs which only have one legal PCS to unpack to,
a sum type such as an enum can unpack to any one of its downcasts. The
fact that an unpack of a place is not always uniquely specified by the place
being unpacked is a meaningful change to how unpacking is thought of in
the original presentation of Prusti[1].8 We believe our relaxation of unique
unpacking is a key step towards supporting the remaining unimplemented
projections (Index, ConstantIndex, Subslice, and OpaqueCast) in the fu-
ture.

Our model also is designed to support reasoning about allocated but
uninitialized places with resources. An uninitialized place can be thought of
as having permission to write to a place, but not having permission to ac-
cess that place’s value. We say the former capability is shallow, whereas the
latter is deep. This change has the advantage of bringing our model closer
to parity with the compiler-provided information, and it will also become
important for differentiating reborrows from iterated borrows or moves of
borrows in Chapter 3.

Definition 2.1.1 (capabilities). A capability p is one of

p ::= E | S | e | s (2.2)

We call E and S deep capabilities, and e and s are shallow. Furthermore,
we introduce two functions to extract a capability associated to the declared
mutability of a place:

Deep (x) =

{
E x x is mutable

S x x is immutable

Shallow (x) =

{
e x x is mutable

s x x is immutable

(2.3)

8Furthermore, due to undefined behavior there are some situations where several dis-
tinct lists of projections can describe the same place in memory (for example, a field of
ADT x with just one variant V may be described as either (x as V).0 or x.0).

9

2.2. The Free PCS

In the nomenclature of the original Prusti paper, the capabilities E and
e entail exclusive (read and write capabilities that do not alias other PCS
members) capabilities to a place whereas the capabilities S and s are shared
(read-only capabilities that might alias other shared PCS members).

Following the Prusti paper, a PCS (place capability summary) is a set
of capability-place pairs r interpreted as follows:

• The value of exclusive capabilities must not overlap in memory with
the value of any other capability in the PCS.

• Shared capabilities may refer to the same values as another capabil-
ity in the PCS, though we restrict the PCS from holding redundant
capability to the same place.

The PCS is easiest to understand through examples. If x is a struct
then {E x, E x.f} is not a legal PCS because the value of x and the value
of x.f always overlap in memory. Conversely, we can infer from the PCS
{E x, E y} that x and y must not be aliases to the same piece of data.
The definition precludes holding both exclusive and shared capabilities to
the same place, as in {E x, S x.f}. It also disallows the PCS {S x, S x.f},
since the place x.f is a subplace of x, though {S x} is likely to be an ac-
ceptable alternative in this case. It is permissible for x and y to be aliases
in the PCS {S x, S y}, and all of these examples apply in the same way to
shallow permissions as well.

We write x∗y to denote that two places x and y satisfy these properties.
A PCS then can be represented as a set of places, which is the notation
we prefer in this thesis, or as a separating conjunction of capabilities as per
Prusti[1].

2.2 The Free PCS

As mentioned in our introduction a trace which assigns a PCS to each pro-
gram point is too granular to easily observe in the compiler; for initialization
purposes the compiler does not distinguish between a struct and the set of
all of its fields, nor can it query the state of places that are not MovePaths
(places which Prusti users may nevertheless want to write assertions for).
Our approach for PCS inference is as follows:

10

2.2. The Free PCS

1. Define a new data structure, the Free PCS, which approximates to-
gether aspects of the PCS which the compiler does not distinguish.

2. Observe a trace of the free PCS from a simple fixed point analysis.

3. Reconstruct the fine-grained information by inserting pack and unpack
annotations into the program.

Historically, an analogue to step 3 has been handled by the notoriously
hard to read fold/unfold algorithm in Prusti (and more recently referred to
as refolding in [2]). The Free PCS relieves this burden from the passes lower
down in Prusti’s pipeline: any encoding which doesn’t violate the free PCS
can have the rest of a Viper proof derived automatically, and the free PCS
lays out Prusti’s assumptions about Rust’s semantics.

2.2.1 The Free PCS Operations

We define our PCS Operations similarly to Prusti’s original design[1].

Definition 2.2.1. (Free PCS Operations) A free PCS operation is one
of

unpack (r) pack (r) drop (r) (2.4)

where r is a capability-place pair.

The principal difference to the operators defined in [1] is that we have
replaced their remove operator with drop, to reflect a major change in its
semantics.

Definition 2.2.2. (Semantics for free PCS operations) We define the se-
mantics of a free PCS operation using a family of Hoare triples as outlined
in Figure 2.1, and we lift a triple {X} f {Y } to a relation of type P → P
using framing in the usual way:

f(X) = Y

f(X ∗ w) = Y ∗ w.

As in Prusti’s original presentation[1], the pack and unpack operations
are inverses, and structs can unpack to the set of their fields. We deviate
from the original design[1] with the inclusion rule for downcasts, and also
in our rule for unpacking borrows. As mentioned, this enables our model to
delineate between reborrows (&mut (*x)) and iterated borrows (&mut x).
More specifically the latter should block write access to x while the former

11

2.2. The Free PCS

{Z} pack (p x) {p x}
{p x} unpack (p x) {Z}

{p x} unpack (p x) {Z}
{Z} pack (p x) {p x}

{Deep (x)} unpack (Deep (x)) {Shallow (x), E ∗x}
(x : &mut T)

{Deep (x)} unpack (Deep (x)) {Shallow (x), S ∗x}
(x : &T)

{p x} unpack (p x) {p x.t1, . . . , p x.tn}
(x : T, T has fields t1, . . . , tn)

{p x} unpack (p x) {p x.downcast(V,)}
(x : V)

{Deep (x)} drop (Deep (x)) {Shallow (x)} {e x} drop (e x) {s x}

Figure 2.1: Operational semantics for the free operations

12

2.2. The Free PCS

should not; In our semantics for borrows the latter case shallow exclusive
permission will remain in the free PCS whereas in the former it will not.

As per Section 1.1.2, our analysis operates on the MIR before drop-
elaboration and thus we must make some simplifying assumptions about
drops. For one, we will assume that all places which are not definitely ini-
tialized have their values dropped eagerly (this typically occurs at a join
point in the control-flow graph). We also assume that drops have no side
effects,9 so it is legal to drop a place anywhere between a point where it is
not live, and where it is definitely dead. Under these assumptions, we can
perform our own dataflow analysis on a MIR program to reconstruct liveness
information for places. Our analysis computes live regions for all places, so
that the PCS can query information about places not explicitly referenced
by the MIR source. Our analysis also disambiguates some cases of known
undefined behavior regarding duplicated StorageDead statements; this part
of the model serves as the interface to the compiler and thus can adapt to
the changing semantics of the MIR.

2.2.2 Defining The Free PCS

We formalize the approximations described in the prior sections as a pre-
order on the set of legal PCS’s.

Definition 2.2.3. (Free PCS) Let ≲ be the preorder on P , where P0 ≲ P1

when there exists a sequence of free PCS operations (whose semantics are
described by Definition 2.2.2) which transform P1 to P2 when composed.

In the usual way, we define an equivalence relation ∼ on P where P1 ∼ P2

when P1 ≲ P2 ≲ P1. Define the set of Free PCSs to be the quotient
F = P/ ∼. We can define a partial order < on F by lifting ≲ through the
quotient in the usual way: F1 < F2 when F1 ≲ F2 and F1 ̸∼ F2.

One should think about ∼ in this partial order as being equatable by
some sequence of pack and unpack statements, and < as some loss of capa-
bilities (without deallocation). Our analysis is predicated on the following
claim:

9This is true for code devices which are memory-constrained, and for Rust programs
which do not write drop handlers

13

2.2. The Free PCS

Claim 2.2.1. For every MIR program generated from safe Rust, there exists
a Free PCS trace i 7→ Pi where for every program point mid(j) which has an
edge in the control flow graph to start(i), we have Pstart(i) ≲ Pmid(j).

This claim is partly an assurance that the compiler will not generate
memory-unsafe MIR, and partly a promise that our operational semantics
for each MIR statement will respect memory safety. For example, we assume
that the operational semantics will not eliminate capabilities that we may
still need in the future, or will not depend on a packed capability in such
a way that an equivalent unpacked capability does not suffice. This claim
allows us to assume that a trace of the free PCS exists for every legal Rust
program.

We prototyped algorithms (based on unification) to construct an explicit
sequence of free PCS operations in the summer of 2022.

2.2.3 Optimization: removing mutability

Note that it is sound to ignore mutability altogether, declaring

Deep (x) = E x Shallow (x) = e x (2.5)

instead of reading the mutability as in Equation 2.3; this optimization is
sound as it amounts to rewriting the input program such that all locals are
declared as mut, which is always permitted. We note this optimization be-
cause reading the declared mutaibilty of a MIR local is currently challenging
to access at the MIR level, and because it may be desirable for verification
backends such a Prusti to not redundantly verify this aspect of the type
system.

14

Chapter 3

Coupled Borrows

Our strategy for integrating borrows into this model is similar to that which
led us to the free PCS. Historically, Prusti has tracked aliasing relationships
between places in the reborrowing DAG, a directed acyclic hypergraph where
each edge connects sets of capabilities that can be exchanged for each other
during the course of the core proof. Like the free PCS, this information
is too granular to read off of the compiler, so we build off of approximate
information that we can observe instead.

3.1 Borrow Coupling

Following on from the claim made in Definition 1.1.1, we might hope to
reconstruct a reborrowing DAG by reading the outlives (or subset base)
constraints as edges in the graph. Unfortunately, because Polonius is an
approximate analysis, even with Definition 1.1.1 we cannot reconstruct the
order of edges in a reborrowing graph just by inspection of the facts them-
selves. Consider for example Program 3.1. At the start of line 9, both
variables x and y are initialized with live borrows, but statically we (and
Polonius) do not know which. In this situation, the Polonius rules lose pre-
cise aliasing information and approximate each of x and y to alias either
t0 or t1. At the start of line 10 when the place x is no longer live, the
compiler cannot soundly regain capability for either t0 or t1 even though it
certainly must give up permission to the dead borrow x! Thus, if we intend
for the PCS to represent the set of permissions which are accessible at a
given program point then it must also contend with expiring borrows that
we only have approximate aliasing information for.

We say that borrows are coupled when they are possibly aliased behind
the same place. In Program 3.1 the borrows bw0 and bw1 are coupled at
the join point of the conditional, because Polonius does not track data-
dependent borrows.

15

3.2. The Coupling Graph

Program 3.1 Swapping borrows

1 fn swap(mut t0: T, mut t1: T, b: bool) {

2 let mut x = &mut t0; // borrow bw0

3 let mut y = &mut t1; // borrow bw1

4 if b {

5 let tmp = x;

6 x = y;

7 y = tmp;

8 }

9 let last_usage_x = x;

10 let last_usage_y = y;

11 }

12 struct T {} // non -copy type

3.2 The Coupling Graph

We will represent our interpretation of the aliasing information in a data
structure we call the coupling graph, which can be thought of as a dataflow-
insensitive approximation of the reborrowing DAG. First, we outline amodel-
level presentation of this data structure, which is straightforward to define
and similar to a Reborrowing DAG structure used internally by tools such as
Prusti and Aeneas. Later on, we will present this data structure in another
way which is simpler to infer from Polonius.

Definition 3.2.1. (Coupling Graph, Model-level)

A linear resource is one of

• a place-capability pair

• a place-capability-location triple (called tagged resources), or

• a Polonius loan atom.

ACoupling Graph is a directed acyclic hypergraph on the set of tagged
resources, where each hyperedge connects two legal PCS’s. The directed
edges in this graph are described by one of the rows in Figure 3.2.1: an edge
annotated with an Annotation is directed from the set of From vertices to
the set of To vertices.

16

3.2. The Coupling Graph

Annotation From To

Move(from, to) { from } { to }
Reborrow(from, to) { from } { to }
Borrow(loan, from) { from } { loan }

Pack(from, to) from { to }
Unpack(from, to) { from } to

Coupled(pre, id, post) pre post

Figure 3.1: Edge annotation rules for the coupling graph. Curly braces
indicate that their contents are a single vertex, rather than a set of vertices.

Returning to step through our example, Figure 3.2 displays the coupling
graph at several points in Program 3.1. At the start of line 4 we have com-
plete information about which places alias t0 and t1. At the start of line 9
we know that both of x and y are aliasing t0 and t1 but not which aliases
which. Finally, at the start line 10, we know x is no longer aliasing t0 or
t1 since it has been dropped, but we still cannot regain access to t0 or t1
while y is accessible. When y dies at the start of line 11, the coupling graph
is cleared and the PCS can regain capabilities for both t0 and t1.

In this thesis we will not present a formal connection between the cou-
pling graph and the reborrowing DAG, a similar data structure in Prusti
which encodes aliasing relationships between places. We note that a cou-
pling graph can be seen as a fully approximate version of the reborrowing
DAG which treats each edge as an opaque exchange between sets of capa-
bilities, though this level of information loss may not be sufficient to verify
core proofs in practice.10

3.2.1 Calculating the Coupling Graph

Unfortunately, while the presentation of the coupling graph in Section 3.2 is
straightforward to interpret as a reborrowing DAG, it does not readily admit
an inference algorithm. To rectify this, we use a different representation of
the same mathematical object that is more tightly linked to the Polonius
facts themselves.

Definition 3.2.2. (Coupling Graph, Representation) Let M be a mapping
from live origins to directed acyclic hypergraphs on the set of capabilities

10We are currently exploring a flow-dependent extension to this system as one possible
solution to this issue.

17

3.2. The Coupling Graph

(4)

move bw0

move bw1

x

y

bw0

bw1

t0

t1

(9)
coupled(bw0, bw1)

y

x

t1

t0

(10)
coupled(bw0, bw1)

y t1

t0

Figure 3.2: Model-level coupling graphs for Program 3.1 at the start of lines
4 (after the initialization of x and y), 9 (after the if block), and 10 (after
borrow x expires).

18

3.2. The Coupling Graph

#7r: {E *_5} --* {E _1, E _2}

{E *5} -coupled(cb1) -> {E _1 , E _2}

#6r: {E *_4} --* {E _2}

{E *4} -coupled(cb1) -> {E _1 , E _2}

Figure 3.3: Implementation-level coupling graph for Program 3.1 at the
start of line 9.

such that leaves(M(o)) ∼ lhs(o). For brevity, we extend the legal edge an-
notations to include shared(o) for origins o whose from and to vertices are
the leaves and roots of M(o), respectively (this edge should be interpreted
as the entire graph M(o) in its place).

The coupling graph is the smallest directed acyclic hypergraph which
contains the entire range of this map, where Coupled edges with the same
id are joined by taking the union of their from- and to-nodes.

This representation of the graph makes a more explicit connection be-
tween lifetimes (or origins) and the edges they represent. Every lifetime in
a program, including those which are left implicit from the source program,
represents a particular subgraph of the coupling graph. If one lifetime out-
lives another, and they possibly alias the same place, the longer-lived lifetime
will be a subgraph of the shorter-lived one.

The motivating difference between the coupling graph in its model-level
and represented form is about the representation of edges. More precisely,
a single edge in the model-level coupling graph can correspond to multiple
edges in different origins at the implementation level. Thus a place can
be blocked by several lifetimes, requiring all to end before the place is un-
blocked, as in our coupling example. Compare the coupled edge in Figure 3.3
to its representation in Figure 3.2: the single coupled edge at the model level
becomes two edges in our representation. Each edge in the representation-
level must be expired before we can interpret the edge as expired at the
model-level.

The textual representation in Figure 3.3 comes from our implementation
(Chapter 4) but we will clarify how to read it here as it is used extensively in
the following section. Each origin has its associated subgraph described by a

19

3.2. The Coupling Graph

list of edges11. Its leaves and roots are described using the syntax {leaves}
--* {roots}, which we call its signature, and is intentionally similar to the
magic wand from separation logic. shared edges derive their to- and from-
nodes from this signature.

3.2.2 Free PCS semantics for the Coupling Graph

The coupling graph is designed around the following principles, which will
govern its interaction with the free PCS.

1. The leaves of the coupling graph are always contained in (an equivalent
form under ∼ of) the Free PCS.

2. To perform any operation in the coupling graph, the Free PCS must
remove any leaves which are eliminated and regain any leaves which
are exposed.

3. The coupling graph can only contain deep capabilities.

We will outline the semantics of the coupling graph alongside our current
running example, though we will be brief about parts which only relate to
the operational semantics for owned places. Program 3.2 is a slightly simpli-
fied version of MIR for our example; we will introduce the relevant Polonius
facts from the compiler’s debug output as we step through the program.

Issuing Borrows

We begin at location Start(bb0[0]) with an empty coupling graph, and a
free PCS

{E 1, E 2, E 3}

that contains exclusive capability to t0, t1, and b respectively. Next, the
local 4, representing x, comes into scope with a shallow permission

{E 1, E 2, E 3, e 4}

before a new borrow bw0 of 1 is assigned to it at bb0[1]. Here, Polonius
reports one subset base for the assignment; the issuing origin #2r (which
is the issuing origin of bw0), is a subset of #6r which is the origin associated
to x. Thus, our coupling graph will need

11This can be done unambiguously for all examples presented in this thesis.

20

3.2. The Coupling Graph

Program 3.2 MIR program generated from Program 3.1

bb0:

0: StorageLive(_4),

1: _4 = &mut _1,

2: FakeRead(ForLet(None), _4),

3: StorageLive(_5),

4: _5 = &mut _2,

5: FakeRead(ForLet(None), _5),

6: StorageLive(_6),

7: StorageLive(_7),

8: _7 = _3,

9: switchInt(move _7) -> [0: bb2 , otherwise: bb1]

bb1:

0: StorageLive(_8),

1: _8 = move _4,

2: FakeRead(ForLet(None), _8),

3: StorageLive(_9),

4: _9 = &mut (*_5),

5: _4 = move _9,

6: StorageDead(_9),

7: StorageLive(_10),

8: _10 = &mut (*_8),

9: _5 = move _10 ,

10: StorageDead(_10),

11: _6 = const (),

12: StorageDead(_8),

13: kind: goto -> bb3

bb2:

1: _6 = const (),

2: goto -> bb3

bb3:

0: StorageDead(_7),

1: StorageDead(_6),

2: StorageLive(_11),

3: _11 = move _4,

4: FakeRead(ForLet(None), _11),

5: StorageLive(_12),

6: _12 = move _5,

7: FakeRead(ForLet(None), _12),

8: _0 = const (),

9: StorageDead(_12),

10: StorageDead(_11),

11: StorageDead(_5),

12: StorageDead(_4),

13: return

21

3.2. The Coupling Graph

1. a new borrow edge for the issue of the borrow,

2. a new move edge from the moved-into place to the borrow,

3. a new shared edge that models the subset #2r <: #6r

4. as with any move, shallow exclusive capability for the moved-into
place,

5. to remove the (deep) borrowed-from place from the PCS and initialize
the moved-into place.

Together, we obtain the coupling graph

+ #2r: {E bw0} --* {E _1}

+ {E bw0} -borrow(bw0)-> {E _1}

+ #6r: {E *_4} --* {E _1}

+ {E *_4} -move -> {E bw0};

+ {E bw0} -shared (#2r)-> {E _1}

We see that the change in the coupling graph induces a change in its
nodes: we have introduced a new root {E 1} and a new leaf {E ∗ 4}. Fol-
lowing the steps outlined above, the free PCS should remove {E 1, e 4}
and regain {E 4} ∼ {e 4, E ∗ 4}, which follows the principle that the
changes in leaves and roots in the coupling graph match the changes in the
Free PCS:

{E 2, E 3, E 4}.

Reading off the Free PCS and coupling graph, we now have complete
capability to 4, and its presence in the Free PCS is blocking access to E 1,
as expected.

Expiring Origins

At program point Mid[bb0[1]] the origin #2r is dead, because the tempo-
rary resource bw0 cannot be used outside of the assignment. Consequently,
Polonius flags this origin, and does not propagate it forward to the next
program point Start[bb0[2]]. It is simple for us to do the same in our
graph: between Mid[bb0[1]] and Start[bb0[2]] we flag that origin #2r is
not live by annotating it with the point where it died:

22

3.2. The Coupling Graph

+ #2r@bb0 [1]: {E bw0} --* {E _1}

{E bw0} -borrow(bw0)-> {E _1}

#6r: {E *_4} --* {E _1}

{E *_4} -move -> {E bw0};

+ {E bw0} -shared (#2r@bb0 [1])-> {E _1}

In general we keep dead origins around as long as they are referred to
by a shared edge,12 in the common case of programs with long reborrowing
chains this reduces a quadratic number of duplicated edges into a linear
one. For brevity in this example, we will rewrite the graph to an equivalent
version that inlines killed origins:

- #2 r@bb0 [1]: {E bw0} --* {E _1}

- {E bw0} -borrow(bw0)-> {E _1}

#6r: {E *_4} --* {E _1}

{E *_4} -move -> {E bw0};

+ {E bw0} -borrow(bw0)-> {E _1}

- {E bw0} -shared (#2 r@bb0 [1]) -> {E _1}

Note that removing origin #2r did not change the set of leaves and roots
in the coupling graph as a whole and so no changes to the PCS were needed.
In general removing an origin may involve some sequence of repacks in order
to assume the right permissions can be removed from the PCS, but we can
trust the free PCS to insert these intermediary statements.

Repeating the procedure above, we can execute up to the end of basic
block bb0, ending with PCS

{e 3, E 4, E 5, E 7}

and coupling graph

#6r: {E *_4} --* {E _1}

{E *_4} -move -> {E bw0};

{E bw0} -borrow(bw0)-> {E _1}

+ #7r: {E *_5} --* {E _2}

+ {E *5} -move -> {E bw1};

+ {E bw1} -borrow(bw1)-> {E _2}

12Leaks of edges are not possible, because our data structure is acyclic.

23

3.2. The Coupling Graph

Moving Borrows

Evaluation of the conditional jump does not change the PCS, and the else
branch bb2 only initializes 6, so we can move inside the if branch next.
The local 8 (representing tmp) comes into scope, and we see that it is being
moved into from the borrow-typed place. To move a borrow in our system,
several steps need to happen at once:

1. we need to add a move edge between the borrows’ dereferences in the
coupling graph,

2. we need to kill the moved-from edge in the coupling graph,

3. we need capability to initialize the moved-to place in the free PCS
(that is, we need shallow exclusive capability for it),

4. we need to gain deep capability for the moved-to place in the coupling
graph.

To prepare for this sequence of steps, we unpack the free PCS to

{e 3, e 4, E ∗ 4, E 5, E 7, e 8}

so it contains the capability to be blocked (E ∗ 4) and the capability for the
set (e 8). Noting that Deep (8) = S 8 and Deep (∗ 8) = E ∗ 8, the free
PCS becomes

{e 4, e 3, E 5, E 7, S 8}

with a coupling graph

- #6r: {E *_4} --* {E _1}

+ #8r: {E *_8} --* {E _1}

+ {E *_8} -move -> {E@bb1 [1] *_4};

+ {E@bb1 [1] *_4} -move -> {E bw0};

{E bw0} -borrow(bw0)-> {E _1}

#7r: {E *_5} --* {E _2}

{E *5} -move -> {E bw1};

{E bw1} -borrow(bw1)-> {E _2}

In this rewrite we implicitly removed the dead origin #6r. Note that the
moved-out-from place 4 is assignable again, as it is mutable and uninitial-
ized. The operational semantics for moves of borrows are intentionally very
similar to the semantics for moves of owned data; the central difference is
that the value of borrows b are represented as a capability to a distinct place
∗b.

24

3.2. The Coupling Graph

Reborrows

After 9 comes into scope, the next statement is a reborrow 9 = &mut(* 5).
A reborrow is similar to a move, but it does not kill the reborrowed-from
place in the coupling graph. To perform a reborrow we must

1. repack so the reborrowed-from place is in the free PCS,

2. ensure we have shallow exclusive capability for the assigned-to place,

3. perform a borrow,

4. add a reborrow edge in the free PCS from the borrow to the reborrowed-
from origin.

In this example step 4 is a trivial edge {E ∗ 5} → {E ∗ 5}; in general this
allows us to borrow one field out of a struct without borrowing the struct
as a whole. The changes to the coupling graph and PCS leave us with

{e 3, e 4, e 5, E ∗ 5, E 7, S 8,E 9}

#8r: {E *_8} --* {E _1}

{E *_8} -move -> {E@bb1 [1] *_4};

{Ebb1 [1] *_4} -move -> {E bw0};

{E bw0} -borrow(bw0)-> {E _1}

#7r: {E *_5} --* {E _2}

{E *5} -move -> {E bw1};

{E bw1} -borrow(bw1)-> {E _2}

+ #9r: {E *_9} --* {E _2}

+ {E *_9} -move -> {E bw2};

+ {E bw2} -borrow(bw2)-> {E *_5};

+ {E *_5} -reborrow -> {E *_5};

+ {E *_5} -shared (#7r)-> {E _2}

While E ∗ 5 is no longer accessible in the free PCS, we could still regain
access to E ∗ 5 by first expiring #9. This is in contrast to a move, where
the moved-from resource is killed. In our case #7r dies anyways because ∗ 5
is not used in the future so we expire that origin from the graph (to no effect
in the PCS).

It is typical for the MIR to translate reborrows from the source into a
borrow into a fresh local followed by a move, which we handle as before, and
then the fresh local 9 goes out of scope. We are left with

25

3.2. The Coupling Graph

{e 3, e 4, E ∗ 4, e 5, E ∗ 5, E 7, S 8}

#8r: {E *_8} --* {E _1}

{E *_8} -move -> {E@bb1 [1] *_4};

{Ebb1 [1] *_4} -move -> {E bw0};

{E bw0} -borrow(bw0)-> {E _1}

- #7r: {E *_5} --* {E _2}

- #9r: {E *_9} --* {E _2}

+ #6r: {E *_4} --* {E _2}

+ {E *_4} -move -> {E@bb1 [5] *_9};

+ {E@bb1 [5] *_9} -move -> {E bw2};

{E bw2} -borrow(bw2)-> {E *_5};

{E *_5} -reborrow -> {E *_5};

{E *5} -move -> {E bw1};

{E bw1} -borrow(bw1)-> {E _2}

Killing Places

We have covered most of the operations the coupling graph can perform
at this point. Now, the MIR reborrows * 8 into a new local 10, before
moving 10 into 5. As 5 is newly initialized again, the resource in the
coupling graph which used to be referred to as 5 and is still part of the
graph’s structure is out of date. We solve this by killing all subplaces of 5
by tagging them with the current location. Killed places behave the same
as any linear resource in the coupling graph, but cannot be regained into
the free PCS.

{e 3, e 4, E ∗ 4, e 5, E ∗ 5, E 7, s 8, e 10}

26

3.2. The Coupling Graph

- #8r: {E *_8} --* {E _1}

+ #7r: {E *_5} --* {E _1}

+ {E*_5} -move -> {E@bb1 [8] *_10};

+ {E@bb1 [8] *_10} -move -> {E bw2};

+ {E bw3} -borrow(bw3)-> {E *_8};

+ {E *_8} -reborrow -> {E *_8};

{E *_8} -move -> {E@bb1 [1] *_4};

{Ebb1 [1] *_4} -move -> {E bw0};

{E bw0} -borrow(bw0)-> {E _1}

#6r: {E *_4} --* {E _2}

{E *_4} -move -> {E@bb1 [5] *_9};

{E@bb1 [5] *_9} -move -> {E bw2};

+ {E bw2} -borrow(bw2)-> {E@bb1 [9] *_5};

+ {E@bb1 [9] *_5} -reborrow -> {E@bb1 [9] *_5};

+ {E@bb1 [9] *5} -move -> {E bw1};

{E bw1} -borrow(bw1)-> {E _2}

Finally, the intermediate locals go out of scope (thus killing them in the
graph) and after some repacking to simplify and initializing 6 the state at
the end of bb1 is

{e 3, E 4, E 5, E 6, E 7}

#7r: {E *_5} --* {E _1}

{E*_5} -move -> {E@bb1 [8] *_10};

{E@bb1 [8] *_10} -move -> {E bw2};

+ {E bw3} -borrow(bw3)-> {E@bb1 [12] *_8};

+ {E@bb1 [12] *_8} -reborrow -> {E@bb1 [12] *_8};

+ {E@bb1 [12] *_8} -move -> {E@bb1 [1] *_4};

{Ebb1 [1] *_4} -move -> {E bw0};

{E bw0} -borrow(bw0)-> {E _1}

#6r: {E *_4} --* {E _2}

{E *_4} -move -> {E@bb1 [5] *_9};

{E@bb1 [5] *_9} -move -> {E bw2};

{E bw2} -borrow(bw2)-> {E@bb1 [9] *_5};

{E@bb1 [9] *_5} -reborrow -> {E@bb1 [9] *_5};

{E@bb1 [9] *5} -move -> {E bw1};

{E bw1} -borrow(bw1)-> {E _2}

27

3.2. The Coupling Graph

Coupling

We’ve shown that the true branch ends with a coupling graph with signatures

#6r: {E *_4} --* {E _2}

#7r: {E *_5} --* {E _1}

and the false branch has the signature it started with, namely

#6r: {E *_4} --* {E _1}

#7r: {E *_5} --* {E _2}

We join these graphs together by creating a coupled edge. More precisely,
we make one coupled edge for every largest family of leaves which may alias
the same place. In this case, the leaves E ∗ 4 and E ∗ 5 may alias either
E 1 or E 2 and so we create one coupled edge cb1 to encompass them
both:

- /* both graphs are combined */

+ #7r: {E *_5} --* {E _1 , E _2}

+ {E *5} -coupled(cb1) -> {E _1 , E _2}

+

+ #6r: {E *_4} --* {E _1 , E _2}

+ {E *4} -coupled(cb1) -> {E _1 , E _2}

Applying Coupled Edges

Finally, the end of the program drops the coupled borrows in sequence. The
coupled borrows are expired in sequence, using the same rules as before. We
will not go into the step-by-step details here since they are similar to what
we’ve already covered, but at bb3[4] the origin #6r expires, changing the
coupling graph to be

#7r: {E *_5} --* {E _1, E _2}

{E *5} -coupled(cb1) -> {E _1 , E _2}

- #6r: {E *_4} --* {E _1, E _2}

- {E *4} -coupled(cb1) -> {E _1, E _2}

and thus consuming E ∗ 4 from the free PCS without giving back either
E 1 or E 2. Compare the nodes and edges to Figure 3.2: the change in
coupled edge that we expect at the model-level is exactly captured by the
rules we have already established for origin expiry.

Interpreted as Viper, we could either represent the coupled edge as a
single magic wand, or as a pair of graphs which are control-flow dependent13.

13In the summer of 2022 we explored a variant of the latter option which efficiently

28

3.2. The Coupling Graph

In either case no edge in the reborrowing graph associated with this coupled
edge should be expired until the edge is eliminated from the model-level
coupling graph, that is, all instances of that coupled edge are eliminated
from our implementation-level coupling graph.

shares subgraphs

29

Chapter 4

Evaluation

One of our principal motivations for this work has been supporting new fea-
tures in Prusti. In this section we will present how our new PCS inference
can support cases that Prusti does not handle.

As a proof of concept, we have implemented the inference algorithm in
Chapter 3 as a prototype extension to Prusti’s existing fixed point analyses.
Our extension reads the MIR and Polonius facts from the compiler, and
outputs a Graphviz trace of the coupling graph at each program point in
the MIR.

4.1 Feature: Magic Wand Inference

Loop invariant inference is a challenging problem for automatic verification
tools. In Prusti, this problem manifests in trying to infer a magic wand
(abstract objects from separation logic which can be applied to exchange
some set of capabilities for another) which describes an invariant on which
capabilities the live borrows are blocking at the loop head. Fortunately, our
analysis so far can provide such a description. Because coupled borrows
can encapsulate several concrete edges in a reborrowing graph, they trans-
late naturally into magic wands that a verifier such as Viper can use directly.

As an example, consider Program 4.1, a modification of Program 3.1
which changes the branching conditional into a loop. Let us perform a fixed
point analysis with the procedure as outlined in Chapter 3. After the first
iteration of the loop body, we perform a join at the loop head which is pre-
cisely the same as the join exiting the if statement as at the end of Section
3.2.2: the else branch in Program 3.1 is the same as performing zero itera-
tions through the loop in Program 4.1. A similar analysis to Section 3.2.1
obtains the same state by iterating the loop body starting with the system
of coupled borrows, and so we find ourselves at a fixed point in only two

30

4.1. Feature: Magic Wand Inference

iterations14.

Program 4.1 A looping permutation of borrows.

1 fn swap(mut t0: T, mut t1: T, b: Bool) {

2 let mut x = &mut t0; // borrow bw0

3 let mut y = &mut t1; // borrow bw1

4 while b {

5 let tmp = x;

6 x = y;

7 y = tmp;

8 }

9 let last_usage_x = x;

10 let last_usage_y = y;

11 }

At the loop head in this program the coupling graph describes the com-
piler’s knowledge of which places are blocking which other places, so is a
good candidate for a loop invariant; In Viper terms, every coupled edge
can be represented by a magic wand which is applied at the point where it
is expired. While not all aspects of the loop body are represented in the
coupling graph (for example, the fact that each iteration always swaps the
borrows with each other), the coupling graph encodes the coarsest possible
relationship between borrows which still sound with respect to the the as-
sumptions made by Polonius. As such it serves as a good foundation for
additional refinement either by user annotations, or by heuristic inference
passes lower down in the Prusti pipeline.

Another example of a program which is challenging for Prusti is rebor-
rowing inside loops, as presented by a linked list traversal in Program 4.2.
Our analysis can infer the magic wand {E ∗ 7}−* {E 1} for the loop in this
program, where 7 is the local associated to list and 1 is the local associ-
ated to l. Surprisingly, no modifications from the procedure in Chapter 3
are needed to infer a magic wand for this example, which Prusti could not
previously handle.

14We have observed this same constant bound on the number of iterations in all of our
test programs.

31

4.1. Feature: Magic Wand Inference

Program 4.2 Linked List Traversal

1 struct Link {next: Box <List >}

2 type List = Option <Link >;

3 fn test(mut l: List)

4 {

5 let mut list = &mut l;

6 while let Some(next_link) = list {

7 list = &mut next_link.next;

8 }

9 let list_live = &mut (*list);

10 }

32

Chapter 5

Future Work

In the near term, we hope to expand our analysis to handle subset base

facts that do not originate from dataflow, in order to support type ascrip-
tions, borrows inside structs, and function calls. We also hope to extend the
prototype to compute the full PCS rather than just the coupling graph, in
order to evaluate the model on examples from crates outside of our hand-
crafted examples.

In this model we have made significant progress towards modelling shared
borrows, another feature with only partial support in Prusti. Shared borrows
exhibit the property that multiple read-only borrows which simultaneously
block write access to a place, the same behavior we observed with coupled
borrows. Furthermore, the Polonius facts for mutable and shared borrows
are nearly identical: their only difference is in the loan invalidated at

fact (since shared borrows are not invalidated on reads) which has no bear-
ing on our inference of the coupling graph whatsoever. Extending the Free
PCS semantics to handle shared borrows is slightly more delicate, and we
hope to develop and test our ideas for doing so through our prototype over
the next few months.

In the longer term, we hope that this model can be a part of Prusti’s
current major refactoring project. We believe that the PCS is a suitable
abstraction to separate compiler details from the rest of Prusti, and that
our model proves that a mechanical derivation of the PCS is feasible under
the current architecture of the Rust compiler.

33

Bibliography

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA) 2019,
pages 147:1–147:30. ACM, 2019.

[2] Vytautas Astrauskas, Aurel B́ılý, Jonáš Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. The prusti project: Formal verification for rust. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal
Methods, pages 88–108, Cham, 2022. Springer International Publishing.

[3] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional
translation. Proc. ACM Program. Lang., 6(ICFP), aug 2022.

[4] The Rust Compiler Team. The polonius book, 2023.

[5] The Rust Compiler Team. The rust book, 2023.

[6] The Rust Compiler Team. Rust compiler development guide, 2023.

[7] The Rust Compiler Team. rustc middle::mir, 2023.

34

	Abstract
	Lay Summary
	Table of Contents
	Acknowledgements
	Overview
	Background
	Compiler Architecture
	Owned data
	The Polonius Borrow Checker

	Owned Places
	Places and Capabilities
	The Free PCS
	The Free PCS Operations
	Defining The Free PCS
	Optimization: removing mutability

	Coupled Borrows
	Borrow Coupling
	The Coupling Graph
	Calculating the Coupling Graph
	Free PCS semantics for the Coupling Graph

	Evaluation
	Feature: Magic Wand Inference

	Future Work
	Bibliography

